151 | 0 | 25 |
下载次数 | 被引频次 | 阅读次数 |
以工业氢氧化铝为原料,研究了采用直接老化-铵盐取代联合法并在脱钠剂的作用下合成介孔γ-AlOOH吸附剂,并用于吸附废水中的刚果红,通过XRD、FT-IR、SEM、TEM、BET-BJH等手段对介孔γ-AlOOH的物相、微观形貌进行表征。结果表明:在温度25℃、吸附剂用量100 mg、刚果红质量浓度300 mg/L、吸附时间180 min、pH=4条件下,刚果红平衡吸附量为586.78 mg/g,脱除率为97.80%;整个吸附过程更适合用准二级动力学模型和Langmuir等温吸附模型描述,在室温下介孔γ-AlOOH对刚果红的饱和吸附量为1 965.265 mg/g,吸附过程是自发、吸热和混乱的,主要吸附机制是吸附质与吸附剂之间形成氢键。
Abstract:Synthesization of mesoporous γ-AlOOH adsorbent via direct aging-ammonium salt substitution combined method in the presence of a desalting agent using metallurgical alumina hydroxide as raw material was investigated, and it was used for the adsorption of Congo red in wastewater.The physical phase and microscopic morphology of mesoporous γ-AlOOH were characterized by XRD,FT-IR,SEM,BET-BJH methods.The results show that the adsorption amount of Congo red by mesoporous γ-AlOOH adsorbent can reach 586.78 mg/g and the removal rate is 97.80% under the conditions of temperature of 25 ℃,adsorbent dosage of 100 mg, Congo red mass concentration of 300 mg/L,adsorption time of 180 min and pH=4.The adsorption process is more consistent with the pseudo-second-order kinetic model and the Langmuir isothermal adsorption model.The saturated adsorption capacity of mesoporous γ-AlOOH on Congo red is 1 965.265 mg/g at room temperature, and the adsorption process is spontaneous, heat absorption and chaotic.The main adsorption mechanism is the formation of hydrogen bonding between the adsorbent and adsorbate.
[1] WANG X M,XU Q,ZHANG L,et al.Adsorption of methylene blue and Congo red from aqueous solution on 3D MXene/carbon foam hybrid aerogels:a study by experimental and statistical physics modeling[J].Journal of Environmental Chemical Engineering,2023,11(1).DOI:10.1016/j.jece.2022.109206.
[2] WANG J,WANG G H,CHENG B,et al.Sulfur-doped g-CN/TiO S-scheme heterojunction photocatalyst for Congo red photodegradation[J].Chinese Journal of Catalysis,2021,42(1):56-68.
[3] BO J L,SHI B L.Performances of residues from hydrolyzed corn-cobs for the adsorption of Congo red[J].Industrial Crops & Products,2024,220(15).DOI:10.1016/j.indcrop.2024.119311.
[4] RAMAZAN G,SEMA K,NAIL A.Preconcentration and determination of vanadium and molybdenum in milk,vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry[J].Talanta,2016,155:38-46.
[5] RITESH S,SRAVAN B,ANNU K L,et al.CaO-doped tetragonal ZrO2 nanoparticles as an effective adsorbent for the removal of organic dye waste[J].Applied Surface Science,2022,596(15).DOI:10.1016/j.apsusc.2022.153651.
[6] MEHVISH A,SANA S,ABDUL R.Microbial use for azo dye degradation-a strategy for dye bioremediation[J].International Microbiology,2019,23(2):149-159.
[7] WANG X Y,HU Z C,CAI T.Facile fabrication of PEDOT/PVDF composite membrane by vapor phase polymerization with excellent separation performance[J].Separation and Purification Technology,2024,353.DOI:10.1016/j.seppur.2024.128286.
[8] ZENG B R,YANG L,ZHENG W,et al.Analysis of the formation process and performance of magnetic Fe3O4@Poly(4-vinylpyridine) absorbent prepared by in-situ synthesis[J].Journal of Materials Science & Technology,2018,34(6):999-1007.
[9] WANG C Y,LI Y J,SHEN R F,et al.Cerium tetraboride synthesized by a molten salt method and its Congo red adsorption performance[J].Advanced Powder Technology,2021,32(7):2226-2233.
[10] GODFRED O B,DIVINE D S,HAI N T,et al.Enhanced adsorption of congo red from aqueous solution using chitosan/hematite nanocomposite hydrogel capsule fabricated via anionic surfactant gelation[J].Colloids and Surfaces:A,2021,625.DOI:10.1016/j.colsurfa.2021.126911.
[11] FADINA A,MUHAMMAD A A Z.Sodium hydroxide-activated Casuarina empty fruit:isotherm,kinetics and thermodynamics of methylene blue and congo red adsorption[J].Environmental Technology & Innovation,2021,23.DOI:10.1016/j.eti.2021.101727.
[12] 田俊英.溶度积驱动循环模板法制备氧化铝空心球及其吸附性能[D].大连:大连理工大学,2018.
[13] WANG P,QI C X,HAO L Y,et al.Sepiolite/Cu2O/Cu photocatalyst:preparation and high performance for degradation of organic dye[J].Journal of Materials Science & Technology,2019,35(3):285-291.
[14] DUONG D L,TUAN A N,X.SANG N,et al.Self-assembly of porphyrin on the surface of a novel composite high performance photocatalyst for the degradation of organic dye from water:characterization and performance evaluation[J].Journal of Environmental Chemical Engineering,2021,9(5).DOI:10.1016/J.JECE.2021.106034.
[15] ZHOU J P,CAI W Q,YANG Z C,et al.N,N-dimethylformamide assisted facile hydrothermal synthesis of boehmite microspheres for highly effective removal of congo red from water[J].Journal of Colloid and Interface Science,2021,583:128-138.
[16] LI K Z,YUAN G Q,DONG L,et al.Boehmite aerogel with ultrahigh adsorption capacity for congo red removal:preparation and adsorption mechanism[J].Separation and Purification Technology,2023,302.DOI:10.1016/j.seppur.2022.122065.
[17] 李中林.高纯介孔氧化铝的制备及其对刚果红/CO2吸附性能研究[D].桂林:桂林理工大学,2022.
[18] VO T K,PARK H K,NAM C W,et al.Facile synthesis and characterization of γ-AlOOH/PVA composite granules for Cr(Ⅵ) adsorption[J].Journal of Industrial and Engineering Chemistry,2018,60:485-492.
[19] ZHANG L L,WU Y S,ZHANG L N,et al.Synthesis and characterization of mesoporous alumina with high specific area via coprecipitation method[J].Vacuum,2016,133:1-6.
[20] ROY S,BARDHAN S,PAL K,et al.Crystallinity mediated variation in optical and electrical properties of hydrothermally synthesized boehmite (γ-AlOOH) nanoparticles[J].Journal of Alloys and Compounds,2018,763:749-758.
[21] SONG N,WANG L J,WANG J F,et al.Preparation of three-dimensional nanoporous copper foil with high specific surface area[J].Rare Metals,2024,43(7):3430-3437.
[22] NICOLA R,MUNTEAN S G,NISTOR M A,et al.Highly efficient and fast removal of colored pollutants from single and binary systems,using magnetic mesoporous silica[J].Chemosphere,2020,261.DOI:10.1016/j.chemosphere.2020.127737.
[23] WEBER W J,MORRIS J C.Kinetics of adsorption on carbon from solution[J].Journal of the Sanitary Engineering Division,1963,89(2):31-60.
[24] PAL S,PATRA A S,GHORAI S,et al.Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and Congo red dyes[J].Bioresource Technology,2015,191:291-299.
[25] KUMAR S P,KIRTHIKA K.Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto Bael tree leaf powder[J].Journal of Engineering Science and Technology,2009,4(4):351-363.
[26] 邹婷,吕凤程,李中林,等.四乙烯五胺改性γ-AlOOH对刚果红的吸附性能研究[J].湿法冶金,2023,42(6):621-627.ZOU Ting,LYU Fengcheng,LI Zhonglin,et al.Adsorption properties of tetraethylenepentamine modified γ-AlOOH for Congo red[J].Hydrometallurgy of China,2023,42(6):621-627.
[27] KIRANSAN M,SOLTANI R D C,HASSANI A,et al.Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye[J].Journal of the Taiwan Institute of Chemical Engineers,2014,45(5):2565-2577.
[28] ZHOU J P,CAI W Q,YANG Z C,et al.N,N-dimethylformamide assisted facile hydrothermal synthesis of boehmite microspheres for highly effective removal of congo red from water[J].Journal of Colloid and Interface Science,2021,583:128-138.
[29] TANG J,ZHANG Y F,LIU Y,et al.Efficient ion-enhanced adsorption of congo red on polyacrolein from aqueous solution:experiments,characterization and mechanism studies[J].Separation and Purification Technology,2020,252.DOI:10.1016/j.seppur.2020.117445.
[30] SAPTIAMA I,KANETI Y V,YULIARTO B,et al.Biomolecule-assisted synthesis of hierarchical multilayered boehmite and alumina nanosheets for enhanced molybdenum adsorption[J].Chemistry:A,2019,25(18):4843-4855.
基本信息:
DOI:10.13355/j.cnki.sfyj.2025.04.010
中图分类号:TQ424;X703
引用信息:
[1]李文权,李中林,尚柯成等.直接老化-铵盐取代联合法合成介孔γ-AlOOH及其对刚果红的吸附性能[J].湿法冶金,2025,44(04):503-511.DOI:10.13355/j.cnki.sfyj.2025.04.010.
基金信息:
国家自然科学基金-联合基金-重点支持项目(U23A20557); 广西科技计划项目重大专项(桂科AA23023033-1,桂科AA22067077)