nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 06, v.43 630-639
退役高镍锂电池的硫酸化焙烧—熟化酸浸综合回收工艺研究
基金项目(Foundation): 国家自然科学基金青年基金资助项目(52204363)
邮箱(Email): uschufang@usc.edu.cn;
DOI: 10.13355/j.cnki.sfyj.2024.06.006
摘要:

为综合回收退役高镍三元锂电池中有价组分,研究了采用硫酸化焙烧—水浸工艺选择性提锂,水浸渣再经熟化浸出—除杂—共沉淀工艺制备镍钴锰氢氧化物。结果表明:硫酸化焙烧最佳条件为n(H2SO4)∶n(Li)=1.4∶1、焙烧温度600℃、焙烧时间1 h,焙烧水浸后,Li浸出率可达94.36%,Mn浸出率为11.03%,Ni、Co几乎不浸出;水浸渣在酸矿比1.74、熟化温度120℃、熟化时间120 min、液固体积质量比7.5/1 mL/g条件下熟化酸浸,Li、Ni、Co、Mn、Cu、Fe和Al浸出率分别为97.86%、89.16%、95.09%、100%、63.6%、99.71%和56.76%;酸浸液在pH=3.38、沉淀温度60℃、沉淀时间60 min最佳条件下进行水解沉淀除杂,溶液中Fe、Al、Cu沉淀率可达100%、98.07%和82.51%;除杂后液调整pH后进行共沉淀可形成镍钴锰氢氧化物,在pH=9.44、共沉淀温度55℃、共沉淀时间120 min最佳条件下,Ni、Co、Mn沉淀率可达99.6%、100%和98.72%。

Abstract:

In order to comprehensively recover the valuable components from decommitted high-nickel ternary lithium batteries, lithium was selectively extracted by sulphation roasting and water leaching, and the water leaching residue was then processed by aging leaching, impurity removal and coprecipitation to prepare nickel-cobalt-manganese hydroxide.The results show that the optimum conditions of sulfation roasting are n(H2SO4)∶n(Li)=1.4∶1,roasting temperature of 600 ℃,roasting time of 1 h, and the water leaching rate of Li, Mn can reach 94.36%,11.03%,respectively, Ni and Co hardly leaching.Under the conditions of acid-ore ratio of 1.74,curing temperature of 120 ℃,curing time of 120 min and liquid volume to solid mass ratio of 7.5 mL/1 g, the aqueous leaching slag is cured and acid leaching.The leaching rates of Li, Ni, Co, Mn, Cu, Fe and Al are 97.86%,89.16%,95.09%,100%,63.6%,99.71% and 56.76%,respectively.Under the optimum conditions of pH=3.38,precipitation temperature of 60 ℃ and precipitation time of 60 min, the precipitation rates of Fe, Al and Cu in the solution can reach 100%,98.07% and 82.51%,respectively.Nickel cobalt manganese hydroxide can be formed by co-precipitation after pH adjustment.Under the optimal conditions of pH=9.44,co-precipitation temperature of 55 ℃ and co-precipitation time of 120 min, the precipitation rates of Ni, Co and Mn can reach 99.6%,100% and 98.72%,respectively.

参考文献

[1] ZHENG Y D,LIU Y T,HOU J H,et al.Unraveling the nature of sulfide ions in hydrometallurgical recycling of NCM622 cathode material[J].Energy Storage Materials,2024,65.DOI:10.1016/j.ensm.2023.103128.

[2] 杨卉芃,柳林,丁国峰.全球锂矿资源现状及发展趋势[J].矿产保护与利用,2019,39(5):26-40.

[3] PINEGAR H,SMITH R Y.Recycling of end-of-life lithium ion batteries:Part I commercial processes[J].Journal of Sustainable Metallurgy,2019,5(3):402-416.

[4] 谭显艳,高旭光,张志平.NCM811正极材料的高能量密度体系软包电池评价[J].电源技术,2023,47(3):294-297.

[5] 胡国琛,胡年香,伍继君,等.锂离子电池正极材料中有价金属回收研究进展[J].中国有色金属学报,2021,31(11):3320-3343.

[6] 郝涛,张英杰,董鹏,等.废旧三元动力锂电池正极材料回收的研究进展[J].硅酸盐通报,2018,37(8):2450-2456.

[7] LYU W G,WANG Z H,CAO H B,et al.A critical review and analysis on the recycling of spent lithium-ion batteries[J].ACS Sustainable Chemistry & Engineering Eng,2018,6(2):1504-1521.

[8] 张英杰,宁培超,杨轩,等.废旧三元锂离子电池回收技术研究新进展[J].化工进展,2020,39(7):2828-2840.

[9] LI L,DESHMANE V G,PARANTHAMAN M P,et al.Lithium recovery from aqueous resources and batteries:a brief review[J].Johnson Matthey Technology Review,2018,62(2):161-176.

[10] LI X,GAO S,ZHOU F,et al.NaOH-assisted roasting for co-recovery of spent LiFePO4 and LiCoO2 batteries[J].ACS Sustainable Chemistry & Engineering,2024.DOI:10.1021/acssuschemeng.3c02755.

[11] TRAN M K,RODRIGUES M T F,KEIKO K T,et al.Deep eutectic solvents for cathode recycling of Li-ion batteries[J].Nature Energy,2019,4(4):339-345.

[12] 赵光金,夏大伟,胡玉霞,等.废旧锂离子电池正极材料有价金属湿法浸出[J].中国有色金属学报,2023,33(5):1611-1624.

[13] 张宝,梁祯,张雁南,等.废旧锂离子电池正极材料回收研究进展[J].中国材料进展,2024,43(5):380-391.

[14] 段金亮,阮丁山,陈若葵,等.废旧磷酸铁锂电池粉中锂的选择性浸出动力学[J].湿法冶金,2022,41(6):518-522.

[15] 谭豪,刘卫,刘勇奇,等.废旧锂电池全链条一体化回收产业中铜铝料的酸浸新工艺研究[J].湿法冶金,2023,42(6):582-588.

[16] CHANG D,YANG S H,SHI P F,et al.Selective recovery of lithium and efficient leaching of transition metals from spent LiNixCoyMnzO2 batteries based on a synergistic roasting process[J].Chemical Engineering Journal,2022.DOI:10.1016/j.cej.2022.137752.

[17] 陈昱珏,张梁军,旷焕,等.磷酸铁锂废粉硫酸氢钠焙烧回收工艺研究[J].无机盐工业,2023,55(3):113-117.

[18] 吴洁.废旧锂电池正极材料优先回收锂的工艺[J].化学工程,2023,51(8):89-94.

[19] 曾桂生,郭琴,胡长安.从废弃锂离子电池中回收有价金属的技术[J].湿法冶金,2008,27(4):204-207.

[20] LIU P C,XIAO L,CHEN Y F,et al.Recovering valuable metals from LiNixCoyMn1-x-yO2cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching[J].Journal of Alloys and Compounds,2019,783:743-752.

[21] HUANG Z,LIU F,MAKUZA B,et al.Metal reclamation from spent lithium-ion battery cathode materials:directional conversion of metals based on hydrogen reduction[J].ACS Sustainable Chemistry & Engineering,2022(10):756-765.

[22] CHEN Y M,SHI P F,CHANG D,et al.Selective extraction of valuable metals from spent EV power batteries using sulfation roasting and two stage leaching process[J].Separation and Purification Technology,2021,258.DOI:10.1016/j.seppur.2020.118078.

[23] SHI P F,YANG S H,WU G Q,et al.Efficient separation and recovery of lithium and manganese from spent lithium-ion batteries powder leaching solution[J].Separation and Purification Technology,2023,309.DOI:10.1016/j.seppur.2022.123063.

[24] 王子钰,王碧侠,袁文龙,等.从废旧锂离子电池中回收镍钴锰试验研究[J].湿法冶金,2022,41(5):427-432.

基本信息:

DOI:10.13355/j.cnki.sfyj.2024.06.006

中图分类号:TF803.2

引用信息:

[1]黄燕婷,石鹏飞,曲鑫等.退役高镍锂电池的硫酸化焙烧—熟化酸浸综合回收工艺研究[J].湿法冶金,2024,43(06):630-639.DOI:10.13355/j.cnki.sfyj.2024.06.006.

基金信息:

国家自然科学基金青年基金资助项目(52204363)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文