nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.44 645-652
阴极表面喷砂预处理对锑电沉积的影响
基金项目(Foundation): 云南省建设面向南亚东南亚科技创新中心专项(202303AP140019)
邮箱(Email): yue_810416@kust.edu.cn;
DOI: 10.13355/j.cnki.sfyj.2025.05.009
摘要:

针对碱性电沉积法提取阴极锑过程中,由于Sb-Fe界面结合力不足导致的阴极沉积金属锑易开裂并造成翘板和脱落等问题,提出了采用表面喷砂预处理技术,并结合循环伏安曲线、稳态极化曲线和时间电流暂态曲线系统,分析了阴极表面喷砂预处理对锑离子阴极还原及成核机理的影响机制。结果表明:针对锑的碱性电沉积体系,铁基阴极表面进行喷砂预处理后,阴极还原反应的起始电位向左正移,同一过电位下,电流密度比未经喷砂处理时明显增大,传递系数和交换电流密度增大,说明阴极表面喷砂处理可降低锑离子阴极还原反应能垒,显著提升还原反应速度,并促进锑在阴极表面的三维成核过程,从而获得结晶致密、形貌优良的阴极锑沉积层。进一步深入研究了喷砂粒度对锑电沉积过程的影响规律,并确定最佳的喷砂粒度为80目;在此条件下,阴极电流效率提高至80.1%,槽电压为2.031 V,吨锑直流电耗降低至1 674.76 kW·h/t,阴极锑纯度达98.81%。

Abstract:

In the process of extracting antimony by alkaline electro-deposition, problems such as cracking of the cathode deposited antimony, causing warping and shedding, occur due to insufficient interfacial bonding force between Sb and Fe, surface sandblasting pretreatment technology was proposed.The effects of the sandblasting pretreatment on the cathodic reduction and nucleation mechanism of antimony ions were systematically analyzed by combining cyclic voltammetry, steady-state polarization curves, and time-current transient curves.The results show that for the alkaline electro-deposition system of antimony, after sandblasting pretreatment of the iron-based cathode surface, the initial potential of the cathodic reduction reaction shifts to the left and positive.At the same overpotential, the current density is significantly increased compared to that without sandblasting treatment, and transfer coefficient and exchange current density are also enhanced.This indicates that the sandblasting treatment of the cathode surface can reduce the energy barrier of the cathodic reduction reaction of antimony ions, significantly increase the reduction reaction rate, and promote the three-dimensional nucleation process of antimony on the cathode surface, thereby obtaining a dense.well-shaped cathode antimony deposit layer.Further in-depth research was conducted on the influence of sandblasting particle size on the antimony electro-deposition process, and the optimal sandblasting particle size was determined to be 80 mesh.Under the condition, the cathode current efficiency is increased to 80.1%,the cell voltage is 2.031 V,the direct current power consumption per ton of antimony is reduced to 1674.76 kW·h/t, and the purity of cathode antimony reaches 98.81%.

参考文献

[1] 朱宏伟.第四代半导体浅析[J].自然杂志,2024,46(6):444-447.ZHU Hongwei.Analysis of the fourth-generation semiconductors[J].Chinese Journal of Nature,2024,46(6):444-447.

[2] 胡德鹏,王红真,路云峰,等.锑化物半导体材料及其分子束外延生长研究进展[J].半导体技术,2025,50(3):229-240.HU Depeng,WANG Hongzhen,LU Yunfeng,et al.Research progress of antimonide semiconductor materials and their molecular beam epitaxial growth[J].Semiconductor Technology,2025,50(3):229-240.

[3] 曾平生,梁勇,杨飞,等.用盐酸浸出—水解法从分银渣中分离锑铋铜[J].湿法冶金,2022,41(1):5-9.ZENG Pingsheng,LIANG Yong,YANG Fei,et al.Separation of Sb,Bi and Cu from silver-separated slag by hydrochloric acid leaching—hydrolysis[J].Hydrometallurgy of China,2022,41(1):5-9.

[4] 李中平.中国锑行业发展现状及高质量发展建议[J].中国国土资源经济,2021,34(3):17-20.LI Zhongping.Development status and suggestions for high-quality development of china's antimony industry[J].Natural Resource Economics of China,2021,34 (3):17-20.

[5] 刘洪吉.中国锑业2016[J].中国有色金属,2017(10):46-49.LIU Hongji.China′s antimony industry in 2016[J].China Nonferrous Metals,2017(10):46-49.

[6] WANG K,WANG Q M,CHEN Y L,et al.Material flow analysis of antimony and arsenic in the pyrometallurgical smelting process of antimony[J].Transactions of Nonferrous Metals Society of China,2023,33(7):2216-2230.

[7] AWE S A,SANDSTR?M ?.Electrowinning of antimony from model sulphide alkaline solutions[J].Hydrometallurgy,2013,137:60-67.

[8] 李树昌,李楚颐,余延年.改善电积锑阴极沉积状况的添加剂[J].矿冶工程,1983,3(1):41-43.LI Shuchang,LI Chuyi,YU Yannian.Additives for improving the cathodic deposition of electrowinning antimony[J].Mining and Metallurgical Engineering,1983,3(1):41-43.

[9] NIETO K,WINDSOR D S,KALE A R,et al.Morphological & structural control of electrodeposited Sb anodes through solution additives and their influence on electrochemical performance in Na-ion batteries[J].Journal of Physical Chemistry:C,2023,127(26):12415-12427.

[10] 林艳,谢刚,杨大锦.H2SO4-NH4F-SbF3体系中锑的电化学成核机理[J].有色金属(冶炼部分),2010(2):13-17.LIN Yan,XIE Gang,YANG Dajin.Electrochemical nucleation mechanism of antimony in H2SO4-NH4F-SbF3 system[J].Nonferrous Metals (Extractive Metallurgy),2010(2):13-17.

[11] 刘彪,李兵虎,郑振,等.原板的电化学酸洗对镀锡板表面形貌及孔隙率的影响[J].电镀与涂饰,2010,29(1):19-21.LIU Biao,LI Binghu,ZHENG Zhen,et al.Influence of electrochemical pickling of base plate on surface morphology and porosity of tin-coated sheet[J].Electroplating & Finishing,2010,29 (1):19-21.

[12] 李俊摘.高锑电解液的影响[J].中国有色冶金,2016,45(1):1-5.LI Junzhai.Influence of high-antimony electrolyte[J].China Nonferrous Metallurgy,2016,45(1):1-5.

[13] AWE S A,SUNDKVIST J E,SANDSTR?M ?.Formation of sulphur oxyanions and theirinfluence on antimony electrowinning from sulphide electrolytes[J].Minerals Engineering,2013,53:39-47.

[14] MAJIDZADE V A,GULIYEV P H,ALIYEV A S,et al.Electrochemical characterization and electrode kinetics for antimony electrodeposition from its oxychloride solution in the presence of tartaric acid[J].Journal of Molecular Structure,2017,1136:7-13.

[15] 李汶军,施尔畏,郑燕青,等.氧化物晶体的成核机理与晶粒粒度[J].无机材料学报,2000(5):777-786.LI Wenjun,SHI Erwei,ZHENG Yanqing,et al.Nucleation mechanism and grain size of oxide crystals[J].Journal of Inorganic Materials,2000(5):777-786.

[16] 冯谙,范利军,蔡陶,等.电沉积二氧化锰成核机理及其充放电性能[J].应用化学,2015,32(9):1081-1087.FENG An,FAN Lijun,CAI Tao,et al.Nucleation mechanism of electrodeposited manganese dioxide and its charge-discharge performance[J].Chinese Journal of Applied Chemistry,2015,32(9):1081-1087.

[17] LIU A M,REN X F,AN M Z.A composite additive used for a new cyanide-free silver plating bath (Ⅱ):an insight by electrochemical measurements and quantum chemical calculation[J].New Journal of Chemistry,2017,41(19):11104-11112.

[18] MáRQUEZ K,STAIKOV G,SCHULTZE J W.Silver deposition on silicon and glassy carbon:a comparative study in cyanide medium[J].Electrochimica Acta,2003,48(7):875-882.

[19] 赵金龙,张华云.喷砂对45#钢表面耐蚀性的影响[J].电镀与精饰,2023,45(3):95-100.ZHAO Jinlong,ZHANG Huayun.Influence of sandblasting on the corrosion resistance of 45# steel surface[J].Plating & Finishing,2023,45(3):95-100.

基本信息:

DOI:10.13355/j.cnki.sfyj.2025.05.009

中图分类号:TF818

引用信息:

[1]高清利,崔焱,林艳.阴极表面喷砂预处理对锑电沉积的影响[J].湿法冶金,2025,44(05):645-652.DOI:10.13355/j.cnki.sfyj.2025.05.009.

基金信息:

云南省建设面向南亚东南亚科技创新中心专项(202303AP140019)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文