nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.44 681-691
基于响应曲面法的铜电解废液脱杂工艺参数优化研究
基金项目(Foundation):
邮箱(Email): 459636769@qq.com;
DOI: 10.13355/j.cnki.sfyj.2025.05.014
摘要:

研究了用硫化氢脱除铜电解废液杂质(砷、锑、铋),考察了硫化氢过量系数、反应温度、反应时间及搅拌速度对铜电解废液脱杂的影响,通过响应面法进一步优化试验条件,并在该条件下进行试验验证。结果表明:最优试验条件为硫化氢过量系数1.9,反应温度68.1℃,反应时间2.1 h,搅拌速度524 r/min;在最优条件下,铜电解废液杂质平均脱除率可达94.2%。采用该法确定的优化工艺参数可靠且适用,不会影响后续镍元素的回收。

Abstract:

Removal of impurities(arsenic, antimony, bismuth) from copper electrolytic waste liquid by hydrogen sulfide was studied.The effects of the excess coefficient of hydrogen sulfide, reaction temperature, reaction time and stirring speed on the impurity removal of copper electrolytic waste liquid were investigated.The experimental conditions were further optimized by the response surface methodology, and the experiments were verified under these conditions.The results show that the optimal test conditions are as follows: the excess coefficient of hydrogen sulfide is 1.9,the reaction temperature is 68.1 ℃,the reaction time is 2.1 h, and the stirring speed is 524 r/min.Under the optimal conditions, the average impurity removal rate of copper electrolysis waste liquid can reach 94.2%.The optimized process parameters determined by the method are reliable and applicable, and will not affect the subsequent recovery of nickel elements.

参考文献

[1] 谭芳香,黄以伟.废杂铜电解杂质控制的研究及生产实践[J].云南化工,2020,47(4):71-72.TAN Fangxiang,HUANG Yiwei.Research and practice of impurities control from scrap copper electrolysis[J].Yunnan Chemical Technology,2020,47(4):71-72.

[2] 陈玉虎,俞挺,马丹辉,等.铜电解液电积净液工艺现状[J].广州化工,2020,48(7):14-16.CHEN Yuhu,YU Ting,MA Danhui,et al.Research progress on purification of arsenic by electrolytic method[J].Guangzhou Chemical Industry,2020,48(7):14-16.

[3] 夏栋,蒋晓云,刘雅倩,等.用树脂吸附从铜电解液中去除锑铋实验[J].矿产综合利用,2023(1):204-210.XIA Dong,JIANG Xiaoyun,LIU Yaqian,et al.Removal of antimony and bismuth in copper electrolyte by resin adsorption[J].Multipurpose Utilization of Mineral Resources,2023(1):204-210.

[4] 汪超勤,杨锦波,邹先志.提高铜电解净化工序脱杂效率的生产实践[J].山西冶金,2024,47(5):145-147.WANG Chaoqin,YANG Jinbo,ZOU Xianzhi.Production practice of improving impurity removal efficiency in copper electrolysis purification process[J].Shanxi Metallurgy,2024,47(5):145-147.

[5] 朱茂兰,涂弢,朱根松,等.铜电积技术的现状及发展[J].有色金属(冶炼部分),2014(8):9-13.ZHU Maolan,TU Tao,ZHU Gensong,et al.Status and development of copper electrowinning[J].Nonferrous Metals(Extractive Metallurgy),2014(8):9-13.

[6] 丁克健.铜电解液净化工艺的比较与选择[J].资源再生,2013(7):66-68.DING Kejian.The comparison and selection of copper electrolyte purification processes[J].Resource Recycling,2013(7):66-68.

[7] GUPTA B,ZAREENA B I.Separation and removal of arsenic from metallurgical solutions using bis(2,4,4-trimethylpentyl) dithiophosphinic acid as extractant[J].Separation & Purification Technology,2008,63(1):77-85.

[8] 王学文,肖炳瑞,张帆.铜电解液碳酸钡脱铋新工艺[J].中国有色金属学报,2006,16(7):1295-1299.WANG Xuewen,XIAO Bingrui,ZHANG Fan.New process of bismuth removal from copper electrolyte with barium carbonate[J].The Chinese Journal of Nonferrous Metals,2006,16(7):1295-1299.

[9] 许民才,单承湘,吴国荣,等.共沉淀法净化铜电解液中砷锑铋的研究[J].合肥工业大学学报(自然科学版),1992,15(增刊1):134-139.XU Mincai,SHAN Chengxiang,WU Guorong,et al.A Study on the removal of arsenic.antimong and bismnth from the spent copper electrolyte by coprecipitation methods[J].Journal of Hefei University of Technology:Natural Science,1992,15(Sup.1):134-139.

[10] 洪凯,樊欢,田佳,等.硫化沉淀法处理铜砷多金属酸性废水研究进展[J/OL].化工进展,1-17[2025-02-09].https://doi.org/10.16085/j.issn.1000-6613.2024-1061.HONG Kai,FAN Huan,TIAN Jia,et al.Research progress on the treatment of copper arsenic polymetallic acidic wastewater by sulfide precipitation[J/OL].Chemical Industry and Engineering Progress,1-17[2025-02-09].https://doi.org/10.16085/j.issn.1000-6613.2024-1061.

[11] 梅光贵,钟云波,钟竹前.硫化沉淀法净化铜废电解液的热力学分析[J].中南工业大学学报,1996,27(1):31-35.MEI Guanggui,ZHONG Yunbo,ZHONG Zhuqian.The thermodynamic analysis of purifying spent copper electrolyte using sulfide precipitation method[J].Journal of Central South University of Technology(Natural Science),1996,27(1):31-35.

[12] 韦洁,裴启飞,陆占清,等.响应曲面法优化超声协同活化剂浸出高硅低锗氧化锌烟尘研究[J].湿法冶金,2024,43(5):573-582.WEI Jie,PEI Qifei,LU Zhanqing,et al.Optimization of ultrasound-assisted activator leaching technology of high-silicon and low-germanium zinc oxide dust by response surface method[J].Hydrometallurgy of China,2024,43(5):573-582.

[13] 高娜.响应曲面法优化废电路板浸金工艺参数试验研究[J].湿法冶金,2022,41(6):553-557.GAO Na.Optimizing leaching conditions of gold from waste printed circuit boards by response surface methodology[J].Hydrometallurgy of China,2022,41(6):553-557.

[14] 魏巍,韩振斌,于国军,等.基于响应曲面法的异型铜带清洗工艺参数优化研究[J/OL].铜业工程,1-8[2025-04-02].http://kns.cnki.net/kcms/detail/36.1237.tf.20250314.1704.002.html.WEI Wei,HAN Zhenbin,YU Guojun,et al.Research on optimization of special-shaped copper strip cleaning process parameters based on response surface method[J/OL].Copper Engineering,1-8[2025-04-02].http://kns.cnki.net/kcms/detail/36.1237.tf.20250314.1704.002.html.

[15] 蒋宗来,孙建光,辛国杨,等.用响应曲面法优化高氯废水脱氯试验研究[J].湿法冶金,2023,42(3):306-311.JIANG Zonglai,SUN Jianguang,XIN Guoyang,et al.Optimization of dechlorination of high chlorine wastewater by response surface method[J].Hydrometallurgy of China,2023,42(3):306-311.

[16] VEEKEN A H M,VRIES D S,MARK V D A,et al.Selective precipitation of heavy metals as controlled by a sulfide-selective electrode[J].Separation Science and Technology,2003,38(1):1-19.

[17] PANJIARA D,PRAMANIK H.Optimization of process parameters using response surface methodology (RSM) for power generation via electrooxidation of glycerol in T-Shaped air breathing microfluidic fuel cell (MFC)[J].International Journal of Hydrogen Energy,2020,45(58):33968-33979.

[18] ZULKALI M M D,AHMAD A L,NORULAKMAL N H.Oryza sativa L.husk as heavy metal adsorbent:optimization with lead as model solution[J].Bioresource Technology,2006,97(1):21-25.

[19] KUMARI M,GUPTA S K.Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP):an endeavor to diminish probable cancer risk[J].Scientific Reports,2019,9.DOI:10.1038/S41598-019-54902-8.

[20] 杨宇露.响应面法优化海藻生物质酸水解工艺并发酵制备生物乙醇[D].兰州:兰州大学,2024.

[21] MASON R L,GUNST R F,HESS J L.Statistical design and analysis of experiments:with applications to engineering and science[M].Hoboken,NJ:John Wiley & Sons,2003.

[22] MONTGOMERY D C,RUNGER G C,HUBELE N F.Engineering statistics[M].Hoboken,NJ:John Wiley & Sons,2009.

基本信息:

DOI:10.13355/j.cnki.sfyj.2025.05.014

中图分类号:TF811

引用信息:

[1]吕喜聪,唐文涛,梁柱俊等.基于响应曲面法的铜电解废液脱杂工艺参数优化研究[J].湿法冶金,2025,44(05):681-691.DOI:10.13355/j.cnki.sfyj.2025.05.014.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文