85 | 0 | 10 |
下载次数 | 被引频次 | 阅读次数 |
生物冶金作为未来实现星际基地原位资源利用(ISRU)的一种有效手段,近年来引起了学界的关注。但在微重力效应下,链霉菌与矿物之间的相互作用机制尚不明晰。为探究这一问题,本研究利用回转器模拟了微重力效应下链霉菌Streptomyces sp.R76浸出矿物中的元素。结果表明:模拟微重力环境明显加速了Streptomyces sp.R76发育分化及代谢能力,主要表现在气生菌丝和孢子发育分化提前发生,同时有机酸产量有所提高;在模拟微重力效应下,Streptomyces sp.R76产生的乳酸和枸橼酸浓度分别为8.6、0.17 mmol/L,而在重力条件下,分别为5.8、0.04 mmol/L;当Streptomyces sp.R76与矿物共培养时,模拟微重力效应下的稀土元素浸出率为3‰,钙浸出率为0.11‰,而重力条件下的稀土元素浸出率仅为0.33‰,钙浸出率为0.08‰;Streptomyces sp.R76在微重力条件下产生的乳酸和枸橼酸是促进稀土、硅和钙元素从矿物中浸出的关键。
Abstract:Biometallurgy has drawn the attention of the academic community in recent years as an effective way to achieve in-situ resource utilization(ISRU) in future interstellar bases.However, the mechanism of interaction between Streptomyces and minerals is still unclear under the effect of microgravity.To investigate this issue, simulating the leaching of elements from minerals by Streptomyces sp.R76 under microgravity using clinostats was studied.The results show that the simulated microgravity environment significantly accelerated Streptomyces sp.R76's development, differentiation, and metabolic capacity, which is primarily manifested in the early development and differentiation of aerial hyphae and spores, as well as the increase in organic acid. Streptomyces sp.R76 can produce lactic acid and citric acid at concentrations of 8.6 and 0.17 mmol/L under simulated microgravity and 5.8 and 0.04 mmol/L under gravity, respectively.When Streptomyces sp.R76 is co-cultured with minerals, the leaching rate of rare earth elements under simulated microgravity is 3‰,the leaching rate of calcium is 0.11‰.The leaching rate of rare earth elements under gravity is only 0.33‰ and the leaching rate of calcium is 0.08‰.The lactic acid and citric acid produced by Streptomyces sp.R76 under microgravity conditions are important factors in promoting the leaching of calcium, silicon, and rare earth elements from minerals.
[1] SANTOMARTINO R,AVERESCH N J H,BHUIYAN M,et al.Toward sustainable space exploration:a roadmap for harnessing the power of microorganisms[J].Nature Commolunications,2023,14(1).DOI:10.1038/s41467-023-37070-2.
[2] MAHMOUD A,CéZAC P,HOADLEY A F A,et al.A review of sulfide minerals microbially assisted leaching in stirred tank reactors[J].International Biodeterioration & Biodegradation,2017,119:118-146.
[3] 黄兵.模拟微重力及空间飞行对链霉菌的生物学效应研究[D].北京:中国科学院微生物研究所,2015.
[4] KAKSONEN A H,DENG X,MORRIS C,et al.Potential of Acidithiobacillus ferrooxidans to grow on and bioleach metals from Mars and lunar regolith simulants under simulated microgravity conditions[J].Microorganisms,2021,9(12).DOI:10.3390/microorganisms9122416.
[5] DOUGHERTY M,DEUTSCHBAUER A,BALL N,et al.Results of the Micro-12 flight experiment:effects of microgravity on Shewanella oneidensis MR-1[C]//American Society for Gravitational and Space Research (ASGSR).Annual Meeting of the American Society for Gravitational and Space Research,CA:[s.n.],2019.
[6] HE N,ZHANG Z,MENG X,et al.Effect of microgravity on rare earth elements recovery by Burkholderia cepacia and Aspergillus niger[J].Minerals,2024,14(10).DOI:10.3390/min14101055.
[7] 刘立.柴达木盆地类火星极端环境的土壤微生物研究及其天体生物学意义[D].北京:中国科学院地质与地球物理研究所,2023.
[8] VAN LOON J J W A.Some history and use of the random positioning machine,R/MIN,in gravity related research[J].Advances in Space Research,2007,39(7):1161-1165.
[9] 张利敏.氟碳铈矿中稀土元素的微生物浸出及其机理研究[D].北京:中国地质大学(北京),2019.
[10] DEO N,VASAN S S,MODAK J M,et al.Selective biodissolution of calcium and iron from bauxite in the presence of Bacillus polymyxa[J].Process Metallurgy,1999,9:463-472.
[11] 徐玲玲,杨洪英,周义朋,等.浸铀微生物及其应用[J].有色金属(冶炼部分),2020(4):93-101.XU Lingling,YANG Hongying,ZHOU Yipeng,et al.Uranium-leaching microorganisms and their applications[J].Nonferrous Metals(Extractive Metallurgy),2020(4):93-101.
[12] CHEN Z,HAN Z,GAO B,et al.Bioleaching of rare earth elements from ores and waste materials:current status,economic viability and future prospects[J].Journal of Environmental Management,2024,371.DOI:10.1016/j.jenvman.2024.123217.
[13] MEJIA RESTREPO E,NAVARRO P,VARGAS C,et al.Characterization of construction and demolition waste in order to obtain Ca and Si using a citric acid treatment[J].Dyna,2016,83(199):94-101.
[14] 王建萍,李琼芳,董发勤,等.3种常见细菌胞外特征有机酸对方解石的溶蚀研究[J].岩石矿物学杂志,2015,34(3):387-392.WANG Jianping,LI Qiongfang,DONG Faqin,et al.A study of the dissolution of calcite by three commolon bacterial typical extracellular organic acids[J].Acta Petrologica Et Mineralogica,2015,34(3):387-392.
[15] 李鹏飞,刘云,李越煊,等.柠檬酸对珊瑚砂溶蚀过程及机理研究[J].土壤,2020,52(6):1263-1271.LI Pengfei,LIU Yun,LI Yuexuan,et al.Study on corrosion process of coral sand by citric acid[J].Soils,2020,52(6):1263-1271.
基本信息:
DOI:10.13355/j.cnki.sfyj.2025.03.011
中图分类号:TF18
引用信息:
[1]王维,张利敏,夏庆银等.链霉菌在模拟微重力效应下浸出矿物中元素试验研究[J].湿法冶金,2025,44(03):370-378.DOI:10.13355/j.cnki.sfyj.2025.03.011.
基金信息:
国家自然科学基金面上项目(32370121)