nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.44 342-352
聚合席夫碱的制备及其对废水中Cu(Ⅱ)的吸附性能研究
基金项目(Foundation): 江西省教育厅科技项目(GJJ210836)
邮箱(Email): ren_lili@jxust.edu.cn;
DOI: 10.13355/j.cnki.sfyj.2025.03.008
摘要:

针对芳香胺单体转化率较低、聚合反应氧化剂消耗量大等问题,研究了以间苯二胺和戊二醛为单体,通过醛氨缩合反应制备聚合席夫碱纳米粒子并用于吸附去除废水中的Cu(Ⅱ)。对产物的形貌及结构进行了表征,并探讨了该材料的热稳定性和酸稳定性及其对废水中Cu(Ⅱ)的吸附机制。结果表明:氨基和醛基经亲核加成后生成席夫碱结构,产物为直径100~400 nm的球形纳米颗粒;聚合席夫的CN结构具有较好的热稳定性和酸稳定性,对Cu(Ⅱ)的吸附过程符合Langmuir等温吸附模型和准二级动力学模型的特征;在优化条件下,聚合席夫碱对Cu(Ⅱ)的平衡吸附量为116.30 mg/g,性能优于常见生物炭、磁性铁及其他高分子材料;聚合席夫碱对Cu(Ⅱ)的吸附机制主要为静电作用,并表现出较强的配位能力。

Abstract:

To address the issues of low conversion rate of aromatic amine monomers and high consumption of oxidants in polymerization reactions, the synthesis of polymeric Schiff base nanoparticles using m-phenylenediamine and glutaraldehyde as monomers through aldol-amino condensation reaction and their application in the adsorption and removal of Cu(Ⅱ) from wastewater were investigated.The morphology and structure of the products were characterized, and the thermal stability, acid stability, and adsorption mechanism of the material for Cu(Ⅱ) in wastewater were analyzed.The results show that the amino and aldehyde groups underwent nucleophilic addition to form a Schiff base structure, and the products are spherical nanoparticles with diameters ranging from 100 to 400 nm.The CN structure of the polymeric Schiff base has good thermal stability and acid stability, and the adsorption process of Cu(Ⅱ) conforms to the characteristics of the Langmuir isothermal adsorption model and the pseudo-second-order kinetic model.Under optimized conditions, the equilibrium adsorption capacity of the polymeric Schiff base for Cu(Ⅱ) is 116.30 mg/g, which is superior to that of common biochar, magnetic iron, and other polymer materials.The adsorption mechanism of the polymeric Schiff base for Cu(Ⅱ) is mainly electrostatic interaction and show strong coordination ability.

参考文献

[1] THAWORNCHAISIT U,JUTHAISONG K,PARSONGJEEN K,et al.Optimizing acid leaching of copper from the wastewater treatment sludge of a printed circuit board industry using factorial experimental design[J].Journal of Material Cycles and Waste Management,2019,21(6):1291-1299.

[2] ZHANG M,CAO Y,PENG B,et al.Removal of copper cyanide by precipitate flotation with ammonium salts[J].Process Safety and Environmental Protection,2020,133:82-87.

[3] SONG X,YANG W,LIN Z,et al.A loop of catholyte effluent feeding to bioanodes for complete recovery of Sn,Fe,and Cu with simultaneous treatment of the co-present organics in microbial fuel cells[J].The Science of The Total Environment,2019,651(2):1698-1708.

[4] TANG Q,XU Z,HONG A,et al.Response of soil enzyme activity and bacterial community to copper hydroxide nanofertilizer and its ionic analogue under single versus repeated applications[J].Sci Total Environ,2021,796.DOI:10.1016/j.scitotenv.2021.148974.

[5] 张晨阳,余恒,岳彤,等.电镀含铜废水处理技术研究进展[J].中南大学学报(自然科学版),2022,53(7):2426-2438.ZHANG Chenyang,YU heng,YUE Tong,et al.Research progress of copper electroplating wastewater treatment technology [J].Journal of central South University:Science and Technology,2022,53(7):2426-2438.

[6] SENGUTTUVAN S,SENTHILKUMAR P,JANAKI V,et al.Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters:a review[J].Chemosphere,2021,267.DOI:10.1016/j.chemosphere.2020.129201.

[7] ZHANG L,CHAI L,LIU J,et al.pH manipulation:a facile method for lowering oxidation state and keeping good yield of poly(m-phenylenediamine) and its powerful Ag+ adsorption ability[J].Langmuir,2011,27(22):13729-13738.

[8] YANG Z,REN L,JIN L,et al.In-situ functionalization of poly(m-phenylenediamine) nanoparticles on bacterial cellulose for chromium removal[J].Chemical Engineering Journal,2018,344:441-452.

[9] SHANDIL Y,DAUTOO U K,CHAUHAN G S.New glucosamine schiff base grafted poly(acrylic acid) as efficient Cu2+ ions adsorbent and antimicrobial agent[J].Journal of Environmental Chemical Engineering,2018,6(5):5970-5979.

[10] XU Q,HUANG X,GUO L,et al.Enhancing removal of Cr(Ⅵ),Pb2+,and Cu2+ from aqueous solutions using amino-functionalized cellulose nanocrystal[J].Molecules,2021,26(23).DOI:10.3390/molecules26237315.

[11] KARAB?RK M,MUHAMMED B A,TüMER M,et al.Organosilane-functionalized graphene oxide hybrid material:efficient adsorbent for heavy metal ions in drinking water[J].Phosphorus,Sulfur,and Silicon and The Related Elements,2022,197(2):133-143.

[12] HUANG C,LIAO H,MA X,et al.Adsorption performance of chitosan schiff base towards anionic dyes:electrostatic interaction effects[J].Chemical Physics Letters,2021,780.DOI:10.1016/j.cplett.2021.138958.

[13] ZHANG H,YONG X,ZHOU J,et al.Biomass vanillin-derived polymeric microspheres containing functional aldehyde groups:preparation,characterization,and application as adsorbent[J].Acs Applied Materials & Interfaces,2016,8(4):2753-2763.

[14] HWANG K,PARK H,KIM J,et al.Fully organic CO2 absorbent obtained by a schiff base reaction between branched poly(ethyleneimine) and glutaraldehyde[J].Korean Journal of Chemical Engineering,2018,35(3):798-804.

[15] REN L,YANG Z,JIN L,et al.Hydrothermal synthesis of chemically stable cross-linked poly-schiff base for efficient Cr(Ⅵ) removal[J].Journal of Materials Science,2020,55(8):3259-3278.

[16] TIGHADOUINI S,ROBY O,RADI S,et al.A highly efficient environmental-friendly adsorbent based on schiff base for removal of Cu(Ⅱ) from aqueous solutions:a combined experimental and theoretical study[J].Molecules,2021,26(17).DOI:10.3390/molecules26175164.

[17] AWUAL M R,ELDESOKY G E,YAITA T,et al.Schiff based ligand containing nano-composite adsorbent for optical copper(Ⅱ) ions removal from aqueous solutions[J].Chemical Engineering Journal,2015,279:639-647.

[18] ZHOU J,GAO F,JIAO T,et al.Selective Cu(Ⅱ) ion removal from wastewater via surface charged self-assembled polystyrene-schiff base nanocomposites[J].Colloids and Surfaces:A,2018,545:60-67.

[19] GHOSH S,ALAM M A,GANGULY A,et al.Amido-schiff base derivatives as colorimetric fluoride sensor:effect of nitro substitution on the sensitivity and color change[J].Spectrochimica Acta:A,2015,149:869-874.

[20] MA M,LIANG G,RU Y,et al.Synthesis and adsorption performance of carboxyl-functionalized magnetic agarose gel microspheres for Cu(Ⅱ) removal[J].Journal of Environmental Chemical Engineering,2024,12(3).DOI:10.1016/j.jece.2024.112582.

[21] LI A,ZHANG Y,GE W,et al.Removal of heavy metals from wastewaters with biochar pyrolyzed from mgal-layered double hydroxide-coated rice husk:mechanism and application[J].Bioresource Technology,2022,347.DOI:10.1016/j.biortech.2021.126425.

[22] CHEN Y,LI M,LI Y,et al.Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+:adsorption behavior and mechanisms[J].Bioresour Technol,2021,321.DOI:10.1016/j.biortech.2020.124413.

[23] YANG P,LI F,WANG B,et al.In situ synthesis of carbon nanotube-steel slag composite for Pb(Ⅱ) and Cu(Ⅱ) removal from aqueous solution[J].Nanomaterials (Basel),2022,12(7).DOI:10.3390/nano12071199.

[24] BEHBAHANI E S,DASHTIAN K,GHAEDI M.Fe3O4-FeMoS4:promise magnetite ldh-based adsorbent for simultaneous removal of Pb (Ⅱ),Cd(Ⅱ),and Cu(Ⅱ) heavy metal ions[J].J Hazard Mater,2021,410.DOI:10.1016/j.jhazmat.2020.124560.

[25] RAHMANI Z,GHAEMY M,OLAD A.Removal of heavy metals from polluted water using magnetic adsorbent based on Κ-carrageenan and N-doped carbon dots[J].Hydrometallurgy,2022,213.DOI:10.1016/j.hydromet.2022.105915.

[26] WANG N,YANG D,WANG X,et al.Highly efficient Pb(Ⅱ) and Cu(Ⅱ) removal using hollow Fe3O4@PDA nanoparticles with excellent application capability and reusability[J].Inorganic Chemistry Frontiers,2018,5(9):2174-2182.

[27] TRIKKALIOTIS D G,CHRISTOFORIDIS A K,MITROPOULOS A C,et al.Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol)[J].Carbohydrate Polymers:Scientific and Technological Aspects of Industrially Important Polysaccharides,2020,234.DOI:10.1016/j.carbpol.2020.115890.

[28] MUSIELAK M,GAGOR A,ZAWISZA B,et al.Graphene oxide/carbon nanotube membranes for highly efficient removal of metal ions from water[J].Acs Appl Mater Interfaces,2019,11(31):28582-28590.

[29] CHENG M,YAO C,SU Y,et al.Cyclodextrin modified graphene membrane for highly selective adsorption of organic dyes and copper(Ⅱ) ions[J].Engineered Science,2022.DOI:10.30919/es8d603.

基本信息:

DOI:10.13355/j.cnki.sfyj.2025.03.008

中图分类号:O647.3;X703

引用信息:

[1]郑毅豪,任力理,程俐俐等.聚合席夫碱的制备及其对废水中Cu(Ⅱ)的吸附性能研究[J].湿法冶金,2025,44(03):342-352.DOI:10.13355/j.cnki.sfyj.2025.03.008.

基金信息:

江西省教育厅科技项目(GJJ210836)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文