192 | 0 | 15 |
下载次数 | 被引频次 | 阅读次数 |
以聚苯乙烯二乙烯苯共聚物为载体,通过氯甲基化反应和咪唑改性处理,研究制备了一种新型咪唑基功能树脂,并系统考察了其对酸性溶液中铀的吸附特性和选择性。结果表明:针对pH=5、质量浓度为90 mg/L的含铀酸性溶液,咪唑功能树脂对铀的平衡吸附量达58 mg/g,吸附性能较好;咪唑基功能树脂对溶液中硝酸根离子和氯离子的耐受性较好,对铀的吸附选择性较好,在硝酸根、氯离子质量浓度分别为20和5 g/L时,铀吸附量也能达57 mg/g;当溶液中的铀和干扰金属离子质量浓度均为90 mg/L时,咪唑基功能树脂对铀的吸附量为44 mg/g,而对单个干扰离子(A13+、Ca2+、Mg2+、Zn2+、Mn2+、K+、Na+)的吸附量小于5.4 mg/g;采用0.5 mol/L的HNO3作为解吸剂时,铀解吸率为99.83%。用所制备咪唑基功能树脂吸附某矿山实际含铀酸性废液时,铀吸附量为40.2 mg/g,优于普通201×7树脂。
Abstract:Preparation of a novel imidazole-based functional resin using polystyrene-divinylbenzene copolymer as the support by chloromethylation reaction and imidazole modification was studied.Adsorption properties and selectivity for uranium by the resin from acidic waste solution were systematically investigated.The results show that the equilibrium adsorption capacity of imidazole-based functional resin is 58 mg/g for uranium containing acidic solution with pH=5 and uranium mass concentration of 90 mg/L.Additionally, the resin has good tolerance to nitrate and chloride ions and high adsorption selectivity for uranium.When the mass concentrations of nitrate and chloride are 20 g/L and 5 g/L,respectively, the uranium adsorption capacity can also reach 57 mg/g.When the mass concentrations of uranium and interfering ions in the solution were both 90 mg/L,the adsorption capacity of imidazole-based functional resin for uranium can reach 44 mg/g, while the adsorption capacity of any single interfering ion(A13+,Ca2+,Mg2+,Zn2+,Mn2+,K+,Na+) is less than 5.4 mg/g.Furthermore, 0.5 mol/L HNO3 is used as desorption, the desorption rate is 99.83%.When the imidazole-based functional resin is used to adsorb the actual uranium-containing acid waste liquid from a mine, the adsorption capacity of uranium is 40.2 mg/g, which is superior to that of common 201×7 anion exchange resin.
[1] 王凤菊,陈树森,宋艳,等.水杨酸螯合树脂对铀的吸附性能[J].铀矿冶,2024,43(3):40-44.WANG Fengju,CHEN Shusen,SONG Yan,et al.Adsorption performance of salicylic acid chelating resin for uranium[J].Uranium Mining and Metallurgy,2024,43(3):40-44.
[2] KUMAR J R,KIM J S,LEE J Y,et al.A brief review on solvent extraction of uranium from acidic solutions[J].Separation & Purification Reviews,2011,40(2):77-125.
[3] 宿延涛,封宇,勾阳飞,等.磁性TBP萃淋树脂的制备及吸附铀的性能测试[J].湿法冶金,2019,38(2):110-114.SU Yantao,FENG Yu,GOU Yangfei,et al.Preparation of magnetic TBP levextrel resin and adsorption uranium[J].Hydrometallurgy of China,2019,38(2):110-114.
[4] 陈树森,任宇,勾阳飞,等.从高浓度硫酸体系中提取铀的螯合树脂的研制[J].湿法冶金,2016,35(2):146-149.CHEN Shusen,REN Yu,GOU Yangfei,et al.Synthesis of a chelating resin for extraction of uranium from high-concentration sulfuric acid solution[J].Hydrometallurgy of China,2016,35(2):146-149.
[5] 张伟波.大颗粒偕胺肟基/羧基树脂对酸性废水中铀的分离[D].兰州:兰州大学,2023.
[6] 张益硕.功能化吸附材料的制备及其对低浓度含铀废水的吸附效果与机理研究[D].南昌:东华理工大学,2023.
[7] YAN R H,CUI W R,ZHANG C R,et al.Bio-inspired hydroxylation imidazole linked covalent organic polymers for uranium extraction from aqueous phases[J].Chemical Engineering Journal,2021,420.DOI:10.1016/j.cej.2021.129658.
[8] CUI W R,XU W,QIU W B.Constructing an ultrastable imidazole covalent organic framework for concurrent uranium detection and recovery[J].Ecotoxicology and Environmental Safety,2023,252.DOI:10.1016/j.ecoenv.2023.114639.
[9] PARK J,BAE J,JIN K,et al.Carboxylate-functionalized organic nanocrystals for high-capacity uranium sorbents[J].Journal of Hazardous Materials,2019,371:243-252.
[10] BUDNYAK T M,G?ADYSZ-P?ASKA A,STRIZHAK A V,et al.Imidazole-2yl-phosphonic acid derivative grafted onto mesoporous silica surface as a novel highly effective sorbent for uranium(Ⅵ) ion extraction[J].ACS Applied Materials & Interfaces,2018,10(7):6681-6693.
[11] 任宇,陈树森,勾阳飞.SAPP提铀螯合树脂的耐氯性能测试[J].铀矿冶,2017,36(2):99-104.REN Yu,CHEN Shusen,GOU Yangfei,et al.Test of chlorine resistance behavior of SAPP chelating resin in extraction uranium process[J].Uranium Mining and Metallurgy,2017,36(2):99-104.
[12] 任宇,陈树森,勾阳飞,等.氨基酸功能基高分子吸附剂的制备及从盐湖卤水中吸附铀[J].湿法冶金,2022,41(4):317-323.REN Yu,CHEN Shusen,GOU Yangfei,et al.Preparation of amino acid functional polymer adsorbent and adsorption of uranium from salt lake brine[J].Hydrometallurgy of China,2022,41(4):317-323.
[13] 杨伯和.强碱性阴离子交换树脂从硫酸溶液中吸着铀的机理[J].铀矿冶,1988,7(1):42-46.YANG Bohe.The mechanism of uranium adsorption by strongly basic anion exchange resin from sulfuric acid solution[J].Uranium Mining and Metallurgy,1988,7(1):42-46.
[14] 勾阳飞,封宇,陈树森,等.低密度树脂的制备及其对矿浆中铀的吸附性能研究[J].湿法冶金,2023,42(3):269-275.GOU Yangfei,FENG Yu,CHEN Shusen,et al.Preparation of low-density resin and its adsorption poperties of uranium from pulp[J].Hydrometallurgy of China,2023,42(3):269-275.
[15] 左丽华.氨基酸改性偕胺肟材料的制备及对铀/钒吸附机理研究[D].南昌:东华理工大学,2023.
[16] 刘铠铭,姜秀榕,林昕,等.羧甲基壳聚糖对Cr(Ⅵ)吸附性能及吸附热力学、动力学研究[J].离子交换与吸附,2021,37(3):234-243.LIU Kaiming,JIANG Xiurong,LIN Xin,et al.Study on the adsorprtion property and adsorprtion thermodynamies,kinetics carboxymethyl chitosan for Cr(Ⅵ)[J].Adsorption and Ion Exchange,2021,37(3):234-243.
[17] ZHANG Q,ZENG K,WANG C,et al.An imidazole functionalized porous organic polymer for the highly efficient extraction of uranium from aqueous solutions[J].New Journal of Chemistry,2022,46(19):9238-9249.
基本信息:
DOI:10.13355/j.cnki.sfyj.2025.03.012
中图分类号:X703;TQ424;TQ322
引用信息:
[1]杨吴馨晨,王笑泽,勾阳飞等.咪唑基功能树脂的制备及其对酸性溶液中铀的吸附性能[J].湿法冶金,2025,44(03):379-387.DOI:10.13355/j.cnki.sfyj.2025.03.012.
基金信息:
中国核工业集团有限公司研发平台稳定支持科研项目(WDZC-2023-KYKJ-002)