43 | 0 | 5 |
下载次数 | 被引频次 | 阅读次数 |
新疆热液型铀铍矿是我国重要的铀多金属资源,但铀的赋存规律及其对选冶效率的制约机制尚不明确。研究采用偏光显微镜、扫描电镜、AMICS、EPMA等多尺度矿物表征技术,系统解析了铀的赋存状态及其在浮选-浸出过程中的迁移规律。结果表明:铀主要赋存于硅钙铀矿(76%)、沥青铀矿(16%)及硅铅铀矿(6%)中,铀矿物嵌布粒度细(10~70μm)且解离度低(<5%),需对样品进一步细磨以提高铀矿物解离度,使其能够与浮选药剂充分接触,从而确保选矿效果,另外硅钙铀矿因呈微细粒状,被长石、石英等脉石矿物包裹,在浸出过程中表面可能形成硅凝胶包裹,抑制铀浸出;将原矿细磨至-45μm后,铀矿物解离度得到显著改善,但由于浮选药剂选择性不足,导致其在铍精矿与尾矿中分布规律不明显;硫酸焙烧工艺可有效破坏硅酸盐骨架,使铀浸出率提升99%以上。研究结果可为铀铍共生资源的协同提取工艺优化提供关键理论支撑。
Abstract:Xinjiang hydrothermal uranium-beryllium deposit is a critical polymetallic resource in China, yet the occurrence characteristics of uranium and its migration behavior during beneficiation and metallurgy remain unclear.The occurrence state of uranium and its migration patterns during flotation-leaching processes were systematically investigated through multi-scale mineralogical characterization techniques(polarizing microscope, SEM,AMICS,EPMA).The results indicate that uranium primarily occurs in uranophane(76%),pitchblende(16%),and kasolite(6%).Uranium minerals exhibit fine dissemination sizes(10~70 μm) and low liberation degrees(<5%).The samples needs to be further finely ground to increase the dissociation degree of uranium minerals, so that they can fully contact the flotation reagents, thereyby ensuring the beneficiation effect.Among these factors, uranophane is a primary constraint on uranium leaching due to its fine-grained encapsulation and potential formation of surface silica gel coatings during leaching.While grinding the raw ore to-45 μm significantly improves mineral liberation, insufficient selectivity of flotation reagents results in non-significant distribution patterns between beryllium concentrate and tailings.Sulfuric acid roasting effectively decomposes silicate frameworks, achieving a uranium leaching rate exceeding 99%.The study can provide theoretical insights for optimizing the co-extraction of uranium and beryllium from complex polymetallic ores.
[1] 张鑫,张辉.新疆白杨河大型铍铀矿床成矿流体特征及矿床成因初探[J].地球化学,2013,42(2):143-152.ZHANG Xin,ZHANG Hui.Geochemical characteristics of the ore forming fluid and ore genesis of the Baiyanghe Be-U Deposit,Xinjiang,China[J].Geochimica,2013,42(2):143-152.
[2] 赵振华,沈远超,涂光炽.新疆金属矿产资源的基础研究[M].北京:科学出版社,2001.
[3] 李久庚.新疆某铀铍矿田铍的赋存状态及铀铍关系[J].矿物岩石地球化学通报,1991(2):2-4.LI Jiugeng.The occurrence of berylium and the relationship between uranium and beryllium at a U-Be ore field in Xinjiang[J].Bulletin of Mineralogy,Petrology and Geochemistry,1991(2):2-4.
[4] 陈光旭,李光来,刘晓东,等.西准噶尔白杨河铀矿床沥青铀矿矿物特征及形成环境[J].地质学报,2019,93(4):865-878.CHEN Guangxu,LI Guanglai,LIU Xiaodong,et al.Mineralogical characteristics and formation environment of pitchblende in the Baiyanghe uranium deposit in west Junggar[J].Acta Geologica Sinica,2019,93(4):865-878.
[5] 艾永亮,李伯平,郭冬发,等.影响白杨河铀铍矿提取工艺的矿物学因素探讨[J].有色金属(选矿部分),2015(3):1-3.AI Yongliang,LI Boping,GUO Dongfa,et al.Investigate of-Be extraction process on mineralogy factors of Baiyanghe Deposit[J].Nonferrous Metals(Mineral Processing Section),2015(3):1-3.
[6] 田宇晖,李广,李镯,等.新疆某羟硅铍石型铀铍矿浮选试验研究[J].湿法冶金,2025,44(40):433-439.TIAN Yuhui,LI Guang,LI Zhuo,et al.Experimental study on flotation of a uranium-beryllium ore in Xinjiang[J].Hydrometallurgy of China,2025,44(40):433-439.
[7] 苏玉成.某低品位铍矿选冶工艺试验研究[D].衡阳:南华大学,2024.
[8] 郑惠敏,李丽匣,马嘉,等.新疆某含羟硅铍石矿分选实验[J].矿产综合利用,2024,45(5):24-30.ZHENG Huimin,LI Lixia,MA Jia,et al.Beneficiation of bertrandite ores in Xinjiang[J].Multipurpose Utilization of Mineral Resources,2024,45(5):24-30.
[9] 王培闻.某铀铍矿中铀和铍的浸出和提取工艺研究[D].衡阳:南华大学,2020.
[10] 叶开凯,苏学斌,梁耕宇,等.从铀铍浮选尾矿中回收铀的工艺研究[J].铀矿冶,2023,42(2):34-38.YE Kaikai,SU Xuebin,LIANG Gengyu,et al.Study on recovery uranium from uranium-beryllium flotation tailings[J].Uranium Mining and Metallurgy,2023,42(2):34-38.
[11] 赵凤民,陈璋如,张静宜,等.铀矿物鉴定手册[M].北京:原子能出版社,1988.
[12] 马斌,刘建远.磨矿产品粒度组成对铅浮选的影响研究[J].有色金属(选矿部分),2016(2):29-33.MA Bin,LIU Jianyuan.Research of effect of the particle size composition of grinding product on the flotation of lead[J].Nonferrous Metals(Mineral Processing Section),2016(2):29-33.
[13] 杨稳权,方世祥,庞建涛,等.胶磷矿不同磨矿细度单体解离度测定及其浮选应用[J].武汉工程大学学报,2014,36(4):31-34.YANG Wenquan,FANG Shixiang,PANG Jiantao,et al.Determination of collophane monomer dissociation degree under different grinding fineness and its use in flotation[J].Journal of Wuhan Institute of Technology,2014,36(4):31-34.
[14] 李博,李杨丽,杨芳,等.磨矿粒度对浮选工艺指标影响的研究[J].云南冶金,2023,52(增刊1):26-30.LI Bo,LI Yangli,YANG Fang,et al.Study on the effect of grinding particle size on flotation process indicators[J].Yunnan Metallurgy,2023,52(Sup.1):26-30.
[15] 梁冬云,李波.稀有金属矿工艺矿物学[M].北京:冶金工业出版社,2015.
[16] 李春风,刘志超,李广,等.一种沥青铀矿的浮选捕收剂及其应用:CN201910462875.2[P].2019-12-24.
[17] 王德荫,傅永全.铀矿物学[M].北京:原子能出版社,1981.
基本信息:
DOI:10.13355/j.cnki.sfyj.2025.05.003
中图分类号:TL212
引用信息:
[1]马嘉,李广,叶开凯等.新疆热液型铀铍矿中铀的赋存状态及选冶特性研究[J].湿法冶金,2025,44(05):597-603.DOI:10.13355/j.cnki.sfyj.2025.05.003.
基金信息:
中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金项目(2023NRE-LH-20); 中核集团基础研究项目(CNNC-JCYJ-202331); 核技术研发科研项目资助