345 | 2 | 58 |
下载次数 | 被引频次 | 阅读次数 |
研究设计了一套铝灰水解制氢装置,考察了反应温度、液固体积质量比、搅拌速度及铝灰粒径对铝灰水解制氢过程的影响,并探讨了铝灰水解制氢过程的动力学。结果表明:铝灰水解制氢的最佳工艺条件为反应温度85℃,液固体积质量比10 mL/1 g,搅拌速度130 r/min,铝灰粒径>80目;最佳条件下所得水解渣的主要物相为MgAl2O4、Al(OH)3及Al2O3;铝灰水解制氢过程受化学反应控制,化学表观活化能为67.01 kJ/mol,浸出过程符合Avrami-Erofeyev模型。该法可为铝灰水解制氢工艺过程的设计提供一定技术参考。
Abstract:A set of aluminum dross hydrolysis hydrogen production equipment was experimentally designed and installed.The effects of reaction temperature, liquid volume to solid mass ratio, stirring speed, and aluminum dross particle size on the aluminum dross hydrolysis hydrogen production process were studied, and the kinetics of the aluminum dross hydrolysis hydrogen production process were explored.The results show that the optimal process conditions for aluminum dross hydrolysis hydrogen production are reaction temperature of 85 ℃,liquid volume to solid mass ratio of 10 mL/1 g, and stirring speed of 130 r/min, aluminum dross particle size of >80 mesh.The main phases of the hydrolysis residue obtained under optimal conditions are MgAl2O4,Al(OH)3 and Al2O3.The hydrogen production process from aluminum dross hydrolysis is controlled by chemical reactions, with a chemical apparent activation energy of 67.01 kJ/mol.The leaching process follows the Avrami-Erofeyev model.The experimental results can provide certain technical references for the design of aluminum dross hydrolysis hydrogen production process.
[1]姜澜,邱明放,丁友东,等.铝灰中AlN的水解行为[J].中国有色金属学报,2012,22(12):3555-3561.
[2]唐煜晟,杨万章,陈本松,等.铝电解典型危废的清洁回收技术研究进展[J].湿法冶金,2023,42(6):551-558.
[3]贺永东,何超,陈长科,等.无害化处理对铝灰渣化学成分与物相组成影响研究[J].稀有金属,2022,46(3):340-348.
[4]HUANG X L,TOLAYMAT T.Gas quantity and composition from the hydrolysis of salt cake from secondary aluminum processing[J].International Journal of Environmental Science and Technology,2019,16(4):1955-1966.
[5]PADAMATA S K,YASINSKIY A,POLYAKOV P.A review of secondary aluminum production and its byproducts[J].JOM,2021,73:2603-2614.
[6]TOLAYMAT T,HUANG X L.Secondary aluminum processing waste:salt cake characterization and reactivity[M].Washington,D.C.:US Environmental Protection Agency,2015.
[7]董良民,焦芬,刘维,等.铝灰回收处理研究进展[J].中南大学学报(自然科学版),2022,53(10):3791-3801.
[8]MESHRAM A,JAIN A,GAUTAM D,et al.Synthesis and characterization of tamarugite from aluminium dross[J].Journal of Environmental Management,2019,232:978-984.
[9]HUANG X L,EL BADAWY A,ARAMBEWELA M,et al.Characterization of salt cake from secondary aluminum production[J].Journal of Hazardous Materials,2014,273:192-199.
[10]MESHRAM A,SINGH K K.Recovery of valuable products from hazardous aluminum dross:a review[J].Resources,Conservation and Recycling,2018,130:95-108.
[11]SRIVASTAVA A,MESHRAM A.On trending technologies of aluminium dross recycling:a review[J].Process Safety and Environmental Protection,2023,171:38-54.
[12]MAHINROOSTA M,ALLAHVERDI A.Hazardous aluminum dross characterization and recycling strategies:a critical review[J].Journal of Environmental Management,2018,223:452-468.
[13]MESHRAM A,JHA R,VARGHESE S.Towards recycling:understanding the modern approach to recover waste aluminium dross[J].Materials Today:Proceedings,2021,46:1487-1491.
[14]VERMA S K,DWIVEDI V K,DWIVEDI S P.Utilization of aluminium dross for the development of valuable product:a review[J].Materials Today:Proceedings,2021,43:547-550.
[15]YUAN H K,LUO T,ZHANG D K,et al.Harmless treatment and recycling of secondary aluminum dross:a review[J].Journal of Sustainable Cement-Based Materials,2023,12(11):1460-1473.
[16]DAVID E,KOPAC J.Hydrolysis of aluminum dross material to achieve zero hazardous waste[J].Journal of Hazardous Materials,2012,209:501-509.
[17]YANG Q,LI Q,ZHANG G,et al.Investigation of leaching kinetics of aluminum extraction from secondary aluminum dross with use of hydrochloric acid[J].Hydrometallurgy,2019,187:158-167.
[18]MESHRAM A,JAIN A,RAO M D,et al.From industrial waste to valuable products:preparation of hydrogen gas and alumina from aluminium dross[J].Journal of Material Cycles and Waste Management,2019,21(4):984-993.
[19]RAZAVI-TOUSI S S,SZPUNAR J A.Effect of structural evolution of aluminum powder during ball milling on hydrogen generation in aluminum-water reaction[J].International Journal of Hydrogen Energy,2013,38(2):795-806.
[20]LYU H,ZHAO H,ZUO Z,et al.A thermodynamic and kinetic study of catalyzed hydrolysis of aluminum nitride in secondary aluminum dross[J].Journal of Materials Research and Technology,2020,9(5):9735-9745.
[21]吕帅帅,倪威,倪红军,等.铝灰渣中AlN水解行为及其多元非线性回归分析[J].中国有色金属学报,2020,30(4):920-926.
[22]丁东梅.铝粉遇水反应热动力学行为研究[D].上海:上海应用技术大学,2020.
[23]王延瞳,许开立,李力,等.铝颗粒与水反应产氢影响因素及抑制[J].东北大学学报(自然科学版),2018,39(5):731-735.
[24]李登奇,秦庆伟,刘文科,等.从再生铝二次铝灰中浸出铝的动力学试验研究[J].湿法冶金,2020,39(5):371-375.
[25]DAVID E,KOPAC J.Process and device for generating high purity hydrogen based on hydrolysis reaction of aluminum dross[J].Int J Eng Res Sci,2017,3(7):19-29.
[26]吕帅帅,倪威,倪红军,等.铝灰渣中AlN水解行为及其多元非线性回归分析[J].中国有色金属学报,2020,30(4):920-926.
[27]GAI W Z,LIU W H,DENG Z Y,et al.Reaction of Al powder with water for hydrogen generation under ambient condition[J].International Journal of Hydrogen Energy,2012,37(17):13132-13140.
[28]HUANG X L,TOLAYMAT T.Hydrogen from the aluminum wastes of secondary aluminum production[C]//Fifth Asian Conference on Sustainability,Energy and the Environment.Kobe:[s.n.],2015.
[29]LI Y,QIN Z Y,LI C L,et al.Hazardous characteristics and transformation mechanism in hydrometallurgical disposing strategy of secondary aluminum dross[J].Journal of Environmental Chemical Engineering,2021,9(6).DOI:10.1016/j.jece.2021.106470.
[30]MAHINROOSTA M,ALLAHVERDI A.Enhanced alumina recovery from secondary aluminum dross for high purity nanostructuredγ-alumina powder production:kinetic study[J].Journal of Environmental Management,2018,212:278-291.
[31]SOKIC'M D,MARKOVIC'B,?IVKOVIC'D.Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid[J].Hydrometallurgy,2009,95(3/4):273-279.
[32]赵勇,于炳飞,陈伟,等.铝灰水解脱氮试验研究[J].湿法冶金,2023,42(1):90-94.
基本信息:
DOI:10.13355/j.cnki.sfyj.2024.03.007
中图分类号:X758;TQ116.2
引用信息:
[1]刘定平,王海,陈爱桦等.铝灰水解制氢过程动力学研究[J].湿法冶金,2024,43(03):258-264.DOI:10.13355/j.cnki.sfyj.2024.03.007.
基金信息:
国家自然科学基金资助项目(51676072)