nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.43 230-235
相山铀矿及其伴生稀土资源生物浸出研究
基金项目(Foundation): 北京市科学技术协会2024—2026年度青年人才托举工程项目; 中核矿业科技集团有限公司自主科研项目
邮箱(Email):
DOI: 10.13355/j.cnki.sfyj.2024.03.003
摘要:

为了对相山铀矿伴生稀土资源进行有效的经济开发,研究了利用一株全新的具有特异性铀识别能力的微杆菌Microbacterium sp.6-1对相山富稀土铀矿石进行浸出。结果表明:该株微杆菌可定向附着在含铀矿物表面,高效浸出铀元素及伴生稀土元素。在30 d内可浸出原岩约81%铀元素和约62%稀土元素,且能进一步富集浸出液中重稀土元素。研究结果对综合开发铀-稀土伴生矿资源具有重要参考意义。

Abstract:

In order to develop Xiangshan uranium-rare earth associated ore economically and effectively, a novel strain of Microbacterium sp.6-1 with specific uranium recognition capability was utilized to conduct the bioleaching experiment on Xiangshan uranium-rare earth associated ore.The results show that a novel strain of Microbacterium sp.6-1 can be directionally attached to the surface of uranium-containing minerals and efficiently leach uranium elements and associated rare earth resources.Around 81% uranium and 62% rare earth elements can be leached from the uranium-rare earth associated ore within 30 d, with a further enrichment of heavy rare earth elements in the leachate.The research results have important reference significance for the comprehensive development of uranium-rare earth associated mineral resources.

参考文献

[1] KANAZAWA Y,KAMITANI M.Rare earth minerals and resources in the world[J].Journal of Alloys and Compounds,2006,408:1339-1343.

[2] YANG Y,LI G,HUANG C,et al.Discovery of supergene REE-fluorocarbonate minerals in weathered spheres of Xiajialing regolith-hosted rare earth element deposit in Xiangshan,Jiangxi Province,South China[J].Ore Geology Reviews,2023,162.DOI:10.1016/j.oregeorev.2023.105712.

[3] 康春晖.相山铀矿伴生稀土元素的地球化学特征及其浸出实验[D].衡阳:南华大学,2019.

[4] 彭峰,胡宝群,王倩,等.相山富集HREE铀矿石与围岩的稀土特征对比[J].地质论评,2016,62(增刊1):327-328.

[5] MCLENNAN S M,TAYLOR S.Rare earth element mobility associated with uranium mineralisation[J].Nature,1979,282(5736):247-250.

[6] FRYER B J,TAYLOR R P.Rare-earth element distributions in uraninites:implications for ore genesis[J].Chemical Geology,1987,63(1/2):101-108.

[7] AMRALINOVA B,AGALIYEVA B,LOZYNSKYI V,et al.Rare-metal mineralization in salt lakes and the linkage with composition of granites:evidence from Burabay rock mass(eastern Kazakhstan)[J].Water,2023,15(7).DOI:10.3390/W15071386.

[8] KARSHIGINA Z,ABISHEVA Z,BOCHEVSKAYA Y,et al.Recovery of rare earth metals(REMs) from primary raw material:sulphatization-leaching-precipitation-extraction[J].Mineral Processing and Extractive Metallurgy Review,2018,39(5):319-338.

[9] 李广泽,王洪江,吴爱祥,等.生物浸矿技术研究现状[J].湿法冶金,2014,33(2):82-85.

[10] XIA Q Y,ZHANG L M,DONG H M,et al.Bio-weathering of a uranium-bearing rhyolitic rock from Xiangshan uranium deposit,Southeast China[J].Geochimica et Cosmochimica Acta,2020,279:88-106.

[11] XIA Q Y,JIN Q S,CHEN Y,et al.Combined effects of Fe(Ⅲ)-bearing nontronite and organic ligands on biogenic U(Ⅳ) oxidation[J].Environmental Science & Technology,2022,56(3):1983-1993.

[12] SCHWYN B,NEILANDS J.Universal chemical assay for the detection and determination of siderophores[J].Analytical Biochemistry,1987,160(1):47-56.

[13] WENG Z,JOWITT S M,MUDD G M,et al.A detailed assessment of global rare earth element resources:opportunities and challenges[J].Economic Geology,2015,110(8):1925-1952.

[14] GOYNE K W,BRANTLEY S L,CHOROVER J.Rare earth element release from phosphate minerals in the presence of organic acids[J].Chemical Geology,2010,278(1/2):1-14.

[15] POURRET O,DAVRANCHE M,GRUAU G,et al.Organic complexation of rare earth elements in natural waters:evaluating model calculations from ultrafiltration data[J].Geochimica et Cosmochimica Acta,2007,71(11):2718-2735.

基本信息:

DOI:10.13355/j.cnki.sfyj.2024.03.003

中图分类号:TD868;TD865

引用信息:

[1]夏庆银,刘龙成,牛玉清等.相山铀矿及其伴生稀土资源生物浸出研究[J].湿法冶金,2024,43(03):230-235.DOI:10.13355/j.cnki.sfyj.2024.03.003.

基金信息:

北京市科学技术协会2024—2026年度青年人才托举工程项目; 中核矿业科技集团有限公司自主科研项目

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文